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Chaos in a linear array of vortices 
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An experimental study of the onset of chaos in a linear array of forced vortices is 
presented. The vortices are driven by electromagnetic forces in a layer of electrolyte. 
The system is found to behave like a chain of nonlinearly coupled oscillators, each 
oscillator being sustained by a pair of vortices. Systems with a small number of 
vortices exhibit scenarios characterized by a small number of degrees of freedom. 
Increasing the number of vortices leads to a rapid increase of the complexity of the 
regimes of transition to chaos. For moderately long systems, quasi-periodicity 
preceding the onset of chaos and intermittent behaviour is observed. 

1. Introduction 
Dynamical system theory is a powerful tool for describing weak turbulence in 

confined flows, such as Rayleigh-BQnard convection in a small box (Maurer & 
Libchaber 1978 ; Ahlers & Behringer 1979 ; Berg6 & Dubois 1976), Taylor-Couette 
flow (Fenstermacher, Swinney & Gollub 1979), and others where the instability 
pattern is strongly constrained geometrically. In  such systems, weak turbulence is 
essentially a temporal chaos, characterized by a small number of degrees of freedom. 
I n  contrast, when the cellular flow is poorly confined geometrically, its spatial 
structure is subjected to chaotic fluctuations and weak turbulence takes the form of 
spatio-temporal chaos. This type of turbulence is characterized by a large number of 
degrees of freedom and is still poorly understood theoretically. 

Experimental work on spatio-temporal chaos has been performed mostly on 
convective systems in two distinct situations (for recent papers on the subject, see for 
instance Gao et al. 1987; Kolodner et al. 1986; Walden et al. 1985; Steinberg, Moses 
& Fineberg 1987) : Rayleigh-BBnard convection in pure fluids, and convection in 
binary mixtures. In  the first situation, the primary instability is in the form of 
stationary rolls. Spatio-temporal chaos arising slightly above the instability 
threshold presumably results in this case from the interaction between large-scale 
flows, local three-dimensional instabilities and pattern defects (see for instance 
Pocheau, Croquette & Le Gal 1985). Convection in binary mixtures allows study of 
the case where the first instability sets in as a time-periodic flow (a similar situation 
can be studied by using the stationary Rayleigh-BBnard convection as the basic 
state and looking a t  the dynamics of the oscillatory instability (Croquette & Williams 
1989; Chiffaudel, Fauve & Perrin 1989). A great variety of phenomena has been 
observed prior to the onset of spatio-temporal chaos (formation of localized states, 
competition between waves, emergence of structure defects). Attempts are made to 
interpret such phenomena in the framework of an amplitude equation formalism. All 
these systems are the subject of active research, both theoretical and experimental. 

Another system, which gives rise to interesting dynamical behaviour, is obtained 
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by studying convective instability in an annular geometry and far from the 
instability threshold (Ciliberto & Bigazzi 1988; Dubois et al. 1989). In such 
experiments, spatio-temporal intermittency is observed, whose features seem to be 
close to those derived from the Kuramoto-Shivashinsky model (Chat6 & Manneville 
1986). 

The preceding studies have been carried out on patterns which arise from a natural 
instability. Much less is known on extended patterns produced by forcing. The idea 
of studying the onset of turbulence in forced periodic flows traces back to 
Kolmogorov (see Arnol’d & Meshalkin 1960). His basic idea was to impose the scale 
of injection of the energy and study, as the Reynolds number is increased, how 
energy is transferred throughout a continuous band of wavenumbers. The model 
considered by Kolmogorov and further studied by Meshalkin & Sinai (1961), Green 
(1974) and Sivashinsky (1983) was a plane periodic parallel shear flow. These authors 
have shown that above a certain threshold, large-scale instabilities develop. In  finite- 
size systems, and after a transient, the system is driven towards a state where only 
two lengthscales survive, the lattice period and the system size (She 1987; 
D’HumiBres 1987). One interesting feature of this model is that the process involved 
during the transient state seems to be an inverse cascade (Green 1974; She 1987) ; the 
geometry of this cascade, which has some link with two-dimensional turbulent 
cascades, is still the subject of theoretical studies. 

Experimentally, the onset of turbulence in spatially periodic flows was first 
considered by Bondarenko, Gak & Dolzhanskii (1979), by using magnetohydro- 
dynamic forcing. The first instability of the flow was found to lead to a stable 
stationary supercritical state. The higher-order instabilities were studied only 
qualitatively. Later on, very interesting results were obtained on two-dimensional 
periodic flows by Sommeria (1985), and Nguyen Duc & Sommeria (1988). They 
studied the case of a regular two-dimensional lattice of magnetohydrodynamically 
forced vortices. Depending on the lattice symmetry, and the boundary conditions, 
the system evolves towards either a fully developed turbulent state or a spatio- 
temporal chaos. The nature of the spatio-temporal chaos in this experiment remains 
to be understood. 

In  this paper, we present an experimental study of the onset of chaos in a linear 
array of vortices produced electromagnetically. The flow that we study extends 
along one direction of space and is confined in the other two, so that the spatial 
degrees of freedom are trapped in a one-dimensional space. This is a simplification and 
the results will be compared with other unidimensional systems. We shall follow the 
evolution of the regimes of transition towards weak turbulence as the size of the 
lattice is increased and use the simplicity of the physical configuration to provide a 
quite complete description of various aspects of spatio-temporal chaos for this case. 

2. Description of the experimental arrangement 
The experimental arrangement is shown on figure 1 a,  1 b.  The cell, 350 mm long, 

and 35 mm wide, is machined out of Plexiglas. Permanent magnets are located 
1.2 mm below the bottom of the cell. They are Samarium Cobalt parallelepipeds, of 
dimensions 11.2 x 7 x 6.5 mm, and their magnetization axes are vertical. Each 
magnet produces a magnetic field which has a maximum value of 0.34 T and decays 
over a typical length of 3mm. The magnets are put together to form a line of 
alternated poles. The experimental arrangement allows for the building of such lines 
with an arbitrary number of magnets, up to 24. The cell is filled partially with a 
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FIGURE 1. The experimental system : (a) cross-sectional view ; (5) top view. 
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FIGURE 2. Principle of the measurements of the time-dependent evolution of the system. 

normal solution of sulphuric acid ; the thickness b of the fluid layer is homogeneous 
along the cell to within 3 x mm; b is measured with a micrometer, with an 
accuracy of 0.05 mm. 

is driven through the electrolyte, 
between two copper electrodes, from one side of the cell to the other. The fluid is thus 
subjected to an electromagnetic force, stationary in time, and periodic in space. In  
all cases, the period of the forcing is twice the length A, of a magnet, i.e. 22.4 mm; 
the magnitude of the forcing is controlled by I ,  which is therefore the control 
parameter of the experiment. 

The flow is studied by using a sheet of light produced by a He-Ne 30 mW laser, and 
entering laterally just below the free surface with an almost grazing incidence (see 
figure 2). When we wish to visualize the flow, we put diffusing particles on the free 
surface. For dynamical studies, the free surface is left clean. We take advantage of 
the fact that  the intensity of the beam reflected under the free surface is very 
sensitive to  the shape of the free surface. The flow induces small deformations, 
typically of 10 pm, which thus can be detected by measuring locally, outside the cell, 
the intensity of the reflected beam. An interesting feature of this method is that when 
the amplitudes of the temporal modes are small compared with those of the 
stationary flow, the time-dependent part of the signal is linearly related to the flow 
disturbance. In the nonlinear regime of detection, the signal keeps track of the 
frequencies present in the system but is no longer simply related to  the disturbance 
amplitude. Another possibility provided by the optical technique is that the spatial 
structure of the modes of instability can be characterized by phase measurements 
performed along an axis parallel to the linear array of vortices. We shall use this 

An electric current I ,  regulated within 
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information to characterize both the spatial structure and the temporal behaviour of 
the system. 

One source of noise is related to the presence of capillary waves, which are forced 
by mechanical vibrations present in the environment. Such waves produce a noise 
whose characteristic frequencies are a few Hz,  i.e. about ten times those related to the 
temporal instabilities of the flow. This noise is minimized by working on an optical 
table, and filtering out the signal. Another source of noise is the pollution of the free 
surface ; small particles driven on the surface by the flow perturb the rcflected beam 
at  frequencies related to the temporal instabilities of the flow. Care is taken to work 
with clean surfaces. Under those conditions, the signal-to-noise ratio is about 45 dB. 

3. Summary of the results concerning the stationary states 
The stationary states of the flow have been studied previously (Tabeling, Fauve & 

Perrin 1987) and we summarize herein the main results obtained in the case of large 
systems, i.e. with a large number of magnets (typically 24). At low currents, the flow 
is a linear array of counter-rotating vortices of uniform size A,, equal to that of a 
magnet. This state is stable up to a well-defined value I,, for which we observe the 
onset of a stationary supercritical instability ; above the instability point, the linear 
array is composed of non-uniform tilted vortices, alternatively big and small. The 
size difference between two adjacent vortices and the tilt angle are homogeneous 
throughout the system (except close to the ends) ; both quantities increase 
continuously above I,, up to a certain point I ,  where half of the vortices shrink. 
Above I ,  (and below the onset of temporal modes), the linear array is composed of 
steady corotating vortices of sizes 24,. We denote this state as ‘state + ’. 

All these features concern the case where the number of magnets is even. When the 
number is odd, a defect appears above I,, and the system exhibits time-dependent 
behaviour just above the instability threshold. 

The evolution of the system towards state + has been shown to be related to 
Kolmogorov instability (Tabeling et al. 1987), concerning plane parallel periodic 
flows (for this instability, see Green 1974). The normal modes of this problem are 
essentially those responsible for the tilt,, and the relative increase of the size of the 
vortices in our experiment. 

4. Study of the time-dependent states 
4.1. Introduction 

With a large number of magnets, the dynamics of the system turns out to be very 
complicated, essentially because (as we shall show later) the system behaves like a 
linear chain of nonlinearly coupled oscillators, each oscillator being sustained by a 
vortex pair. I n  view of this behaviour, we first study the case of short linear arrays 
of vortices, and then follow the evolution of the routes to chaos as the length of the 
system is increased. 

4.2. The case of two corotating vortices 

The ease of two corotating vortices is obtained by working with four magnets: in 
such a configuration, the evolution of the system towards state + is shown in figure 
3(a-c). At low current, the structure in the central part of the flow is composed of 
three counter-rotating vortices, a small one squeezed by two large ones (see figure 
3a) .  There are also two additional vortices, of much weaker intensity, located a t  the 
ends. As I is increased, the small vortex at  the centre decreases in size (see figure 3 b ) ,  



Chaos in a linear array of vortices 515 

and further shrinks to zero (see figure 3 c ) ;  above this point, the stationary states 
include two large vortices of the same sign in the central region. The evolution of the 
stationary states from the basic state towards state + in the four-magnet system is 
thus analogous to that observed in the large system, except that, owing to end 
effects, there is no sharp transition at I,. 

We now have a pair of corotating vortices and investigate the temporal instabilities 
of this elementary system. The dynamical events observed as I is further increased 
are shown on figure 3 ( d ,  e ) .  We observe that, above a well-defined threshold I,, both 
the shape of the vortices and the location of their centres fluctuate with time. 
Vortices are periodically squeezed, rotate, decrease and so on as time passes. This 
temporal instability defines a monoperiodic regime, as shown on the power spectrum 
(see figure 4). Close to the critical point, the amplitude of the oscillation follows a 
Landau-type law and its frequency is linear with the control parameter, as shown in 
figures 4-6. The onset of the oscillator thus has the characteristics of a supercritical 
Hopf bifurcation. 

We have studied the dependence of threshold I ,  and frequency f ,  a t  onset with 
thickness b of the fluid layer ; the results are shown on figure 7. There are two regimes : 
a t  small b, the following experimental laws are observed: 

I ,  x 160b-3 and f c  x 650b-', 

where b, I and f are measured in mm, mA and mHz respectively. 
These scaling laws can be understood by the following arguments similar to those 

developed in a preceding paper (Tabeling et al. 1987) : a t  small values of b, the flow 
is two-dimensional and the velocity profile along the normal to the bottom of the cell 
is close to a parabola; in this regime, the fluid viscosity ,u enters the problem only 
through the product ,u/b2, and, by using dimensional arguments, we deduce that the 
system is entirely governed by a Reynolds number whose expression is 

Re = pB,Ib3/p2w2, 
in which p is the mass density, B, is a characteristic value for the magnetic field, and 
w is the width of the cell. This shows that Ib3 is a constant a t  the instability threshold, 
which is precisely what we observe ; the corresponding value of the Reynolds number 
(obtained by replacing B, by its maximum value, i.e. 0.34 T), is Re ,  x 45. Similarly, 
we define the Strouhal number of the system as 

S = f w 2 p / B o I b  = fb2/vRe,  

in which f is the frequency of the temporal mode and v the kinematic viscosity. The 
fact thatfb2 is a constant at onset shows that there is a critical value for S, which we 
find equal to approximately 1.4 x These results indicate - indirectly ~ that the 
range of small b is associated to a two-dimensional regime of flow. 

As b is increased above 2.5mm, more complicated dependence of I ,  and f ,  is 
observed (see figure 7 ) ;  this defines a second regime of flow in which presumably 
three-dimensional effects, such as those related to the presence of secondary flows, 
cease to be negligible. The flow is still essentially two-dimensional in a kinematical 
sense but dynamically, three-dimensional effects become relevant as soon as b is 
larger than 2.5 mm. 

The physical origin of the oscillation is related to a shear instability which develops 
from the region between the two vortices; by using a video camera, we have 
estimated the critical values of the local Reynolds number Re, = pGS2/p (where G is 
the velocity gradient and S is the size of the shear region). The typical values that we 
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FIQURE 3(u-c). For caption see facing page. 
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FIGURE 3. Different states of flow for the case of four magnets, for b = 2.50 mm and for various 
values of I ;  (a )  I = 4.93 mA; ( b )  10.81 mA; (c) 13.09 mA; (d )  20.84 mA; (e) 24.75 mA. 

find are 50; such values are consistent with theoretical estimates for the onset of 
shear instability in a dissipative situation (Chomaz 1986) - similar to that which we 
study. This shear instability produces a distortion of the streamlines, which is 
advected by the vortices a t  a rate close to that relative to the mean rotation of the 
vortex. 

In order to characterize the spatial structure of this oscillation, we have performed 
phase measurements. Figure 8 shows the phase shift of the time-periodic signal 
between two optical probes located at positions corresponding to the centres of the 
vortices. We have checked, by visual observation, that this measurement 
characterizes the spatial oscillation of the vortex centres. We obtain the same phase 
difference - equal to 180” - throughout the supercritical range, except very close to 
I,. By analogy with vibration modes in crystals (although in this case the ‘crystal’ 
is very short), we call this mode ‘optical’. The spatial structure of the oscillation is 
found to be independent of the fluid thickness. 

The range of stability of the oscillation is quite large: it extends from I ,  to 
typically 3I,. A t  larger values of I ,  the system undergoes a sequence of subharmonic 
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FIQURE 4. Direct time recording and Fourier spectrum of the signal obtained on a detector, for 
the case of four magnets, for n = 2.61 mm. 
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FIGURE 5. Dependence, on a log-log plot, of the amplitude of the time dependent mode on the ratio 
of AI to the critical point Ic ,  (where AZ = I - I J  for the four-magnet case, with b = 2.1 1 mm. In this 
experiment, I ,  is 18.45 mA. The straight line has a slope equal to 0.5. 

instabilities leading to chaos, as shown in figure 9. We usually observe the presence 
of a one-third subharmonic preceding the onset of chaos, and we have not been able 
to observe more than one subharmonic bifurcation. The fact that chaos is observed 
just above subharmonic generation and that the Fourier spectrum in the chaotic 
regime shows broad bands centred on the main frequency and its subharmonics 
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FIGURE 9. Power spectrum analysis of the signal obtained on the photodiodes for different 
values of I ,  for the case of four magnets, with b = 2.50 mm. 

indicate that the onset of chaos is related to a low-dimensional scenario, such as a 
subharmonic cascade. 

The evolution towards chaos for the pair of corotating vortices is thus simple. 
There is a single ‘oscillator’ present in a nonlinear system, which drives the flow to 
chaos by generating subharmonics instabilities. We recover in this case the well- 
known evolution of a strongly confined system dominated by a single oscillator. 

4.3. The case of three corotating vortices 

Three corotating vortices are the ‘state + ’ for a system with six magnets. In  this 
case, the spatial structure of the flow a t  low values of I is composed of five counter- 
rotating vortices - three large and two small - in the central region. Similarly to the 
four-magnets case, as the control parameter I is increased, the two small vortices 
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FIQURE 10. Power spectra obtained for the case of six magnets, for b = 2.50 mm, and different 
values of 1. 
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FIGURE 1 1 .  Onset of chaos for the six-magnet case, for b = 2.50 mm. The state for Z = 48.35 mA 

is chaotic; for this value of I ,  one can see the presence of subharmonics up to go. 

decrease in size while the others increase ; above a well-defined value of I ,  the central 
region of the system involves only three vortices of the same sign, defining the ‘state 
+ ’. There are now two regions of large shear, located between each pair of vortices ; 
above a new threshold I,, which is close to that found in the four-magnets case, for 
the same value of b,  state + is subjected to temporal instability. Figure 10(a) shows 



522 P. Tabeling, 0. Curdoso and B. Perrin 

FIGURE 12(u-c). For caption see facing page. 
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FIGURE 12. Different state of flow for the case of eight magnets, for b = 2.10 mm and for 
various values of I; (a) I = 3.68 mA; (b) 13.94 mA; (c) 22.77 mA; ( d )  32.60 mA; (e) 50.13 mA 

that Fourier spectrum of the signal, obtained on the photodiode, for I = 15.02 mA, for 
the case where b = 2.50 mm. This value of I corresponds to a point just above I,. 
There are two distinct oscillators - f o  and f I, - whose frequencies are very close to each 
other : we find 117.2 mHz for the first oscillator and 129.1 mHz for the second one (see 
figure 10a). As I is further increased, the two frequencies lock in (see figure 10); the 
lock-in state remains stable over a wide range of values of the control parameter, 
extending typically from I ,  to  W, or 31,. This state is them subjected to subharmonic 
instability, preceding the onset of chaos (see figure 11). 

As with two corotating vortices, the physical origin of f o  and f is related to a shear 
instability originating between each pair of vortices. The main arguments for this 
statement are that, visually, the mode of instability looks very similar to that 
observed in the corotating vortex pair ; moreover, the observed thresholds and 
frequencies are very close to those found in the two corotating vortices system. I n  the 
three-vortices case, there are two regions of high shear so that the dynamics of the 
system is controlled by two almost identical oscillators. The fact that, close to the 
threshold, two distinct frequencies are observed might be due either to small 
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FIGURE 13. Power spectra obtained for the case of eight magnets, for various values of I ,  
with b = 1.5 mm. 

imperfections in the experimental system, or to the existence of a linear coupling 
between the two oscillators (which would give rise to a splitting effect from the 
natural frequencies of the basic oscillators). The nonlinear coupling between them 
manifests itself in the existence of a frequency lock-in state a t  larger values of the 
control parameter. The fact that  the onset of chaos is related to period doubling 
shows that the dynamics of the system remains trapped in a space of low 
dimensionality. 

These results show that the three corotating vortices system is again essentially a 
strongly confined system but now dominated by two oscillators. 

4.4. Onset of intermittency in the four-vortices system and above 
Figure 12 ( a x )  summarizes the evolution of the system towards state + in the case 
of eight magnets, and for b = 2.10 mm. At low current, there are eight counter- 



Chaos in a linear array of vortices 525 

Z = 44.89 m4 20 s 
H 

I Z =  59.35 mA I 

I = 70.39 mA 

FIQURE 14. Typical direct time recordings showing the onset of intermittency for the case of 
eight magnets. 

rotating vortices in the central region (see figure 12a); as I is increased, some of the 
vortices decrease in size whereas the others increase (see figure 12 b )  ; finally, the flow 
evolves towards a four-corotating vortex state shown in figure 12 (c). There are now 
three regions of high shear. As I is further raised, we first observe a chaotic state (see 
figure 13a). The threshold value for the onset of this temporal event is close to the 
previous critical values I ,  (see $4.2). This chaotic state is presumably the signature 
of the existence of three basic oscillators in weak nonlinear interaction, which, 
according to the general prediction of Ruelle & Takens (1971), would lead to a 
chaotic state. However, in the present experiment, the size of the chaotic region - 
in the parameter space - is too small to be studied accurately ; it is thus difficult to 
make precise inferences concerning such a chaotic regime. 

As I is increased again, the regime ceases to be chaotic and a quasi-periodic state 
is observed (see figure 13b). We then have a 'partial' lock-in state. The subsequent 
regime is a 'complete' locking state, leading to a monoperiodic oscillation (see figure 
13c). In  this regime, the temporal instability has a remarkable spatial structure, 
characterized by the fact that each vortex is out of phase with the next one (see figure 
124 .  This is the optical mode previously found in the four-magnet system (see $4.2). 
The spatial structure of this mode remains stable within a range extending 
approximately from Ic to 21c (I ,  is about 19 mA for b = 2.11 mm). 

A new dynamical event is detected above a new threshold value for I ,  denoted by 
I , ,  where we observe the onset of intermittency on the optical detectors, as shown on 
figure 14: the value of I, is in this case about 40 mA; below I,, the regime is 
monoperiodic and the system is locked on the optical mode (figure 14a); above I, ,  the 
signal is composed of monoperiodic phases, separated by bursts (figure 14b) ; the mean 
duration of the monoperiodic phases first decreases with I and then increases again ; 
For I far above I,, the system is again monoperiodic (see figure 14c). 

The spatial structure of the flow far above I ,  is shown on figure 12e, for I = 
50.13 mA. It looks very different to that below I ,  (see figure 1 2 4  : in the present case, 
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we observe that the two central vortices roughly oscillate in phase, as do two extreme 
ones, and there is a large phase shift between the end vortices and the central ones. 
This structure is confirmed by the phase measurements. We find a small phase 
difference of about 10' to 30' between the two central vortices, a similar phase 
difference between the two extreme ones, and a phase shift roughly equal to 180" 
between these two groups of vortices. Although it  is difficult to interpret a structure 
in so small a system, it can be seen as describing two travelling waves originating from 
the centre of the system and propagating along the lattice in opposite directions with 
about the same phase velocity. We call this mode the ' counter-propagating mode '. 
This structure is very different to that of an optical mode, and it turns out that the 
system undergoes a first-order transition from one structure to  the other as the 
control parameter is increased. The signature of this spatial transition in the 
dynamical space is a regime of competition between two limits cycles, leading to 
intermittency . 

The range of stability of the counter-propagating mode extends to abut 41c. At 
larger values of I ,  this mode is subjected to subharmonic instabilities which further 
trigger the onset of temporal chaos. We recover, in this case, the dynamical 
behaviour of the two- and three-vortex systems a t  large values of the control 
parameter. 

The main novelty in the four-vortex state is therefore the existence of a phase 
transition between two spatial modes, denoted respectively as optical and counter 
propagating. In  this relatively short system, we already have dynamical events 
related to  the fact that  the linear array can sustain distinct spatial structures. The 
dynamics of the system no longer reduces to that of a single oscillator. 

4.5. The case of a larger number of corotating vortices, u p  to 12 
When we increase the number of corotating vortices, the number of regions of large 
shear increases, giving rise to  the onset of a larger number of oscillators above I ,  ; we 
thus expect to find an increasing complexity of the regimes of flow preceding the 
onset of chaos. We have studied configurations with different numbers of magnets, 
from 10 up to 24. The results shown below have been obtained for the case of 16 
magnets; they are typical (but not exhaustive) of the regimes found for reasonably 
large systems. 

The results found in the 16-magnet case, for which state + is a linear array of eight 
corotating vortices, are summarized in the phase diagram shown in figure 15. 
Surprisingly, we find a sensitive dependence of the behaviour of the system on the 
depth of the fluid layer b ,  so that the phase diagram includes both I and b as 
parameters. Such a dependence of the regimes on b is not observed in small systems, 
i.e. when the number of corotating vortices is smaller than six. 

There are two regions in the phase diagram. When b is larger than 2.9mm (and 
below 4 mm), we invariably observe the following sequence of events as the control 
parameter is increased from state + : chaotic quasi-periodic with two frequencies, 
monoperiodic, and then intermittency leading to  chaos. 

The observation of chaos just above state + can be interpreted as related to  the 
presence of many oscillators interacting nonlinearly. Such oscillators lock-in 
'partially' in the form of a quasi-periodic state. The 'complete' lock-in state is 
observed a t  larger values of I ,  in the form of a monoperiodic state, with a well-defined 
frequency, and whose domain of stability is quite large (see the phase diagram). By 
using a video camera, and phase measurements, we observe that the corresponding 
spatial structure of this regime is an optical mode. As I is further increased, the direct 
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time recordings on the optical detectors show the onset of intermittency, which 
persists and increases at larger values of the control parameter. Outside the 
boundary of the optical ‘tongue’ of the system, we thus observe intermittent 
behaviour, which turns out to be the particular form of chaos observed in this region 
of the phase diagram. 

It is plausible that the chaotic regime is related to a crisis between limit cycles in 
the phase space. Below the onset of intermittency, the lattice sustains a stable optical 
mode, which we know to lose stability as the control parameter is increased (see 54.4). 
In  short systems, the system undergoes a transition towards stable counter- 
propagating waves : this has been observed for four up to six corotating vortices. In 
contrast, we did find a situation where such stable states exist when the size of the 
linear array is larger. This can be a direct consequence (in no way easy to understand) 
of the decrease of the confinement on particular collective modes of oscillation, which 
remain to be identified in large systems. 

Another sequence of events is observed for small values of the thickness of the fluid 
layer : for b < 2.75 mm, we observe the following succession of dynamical events as 
I is increased from ‘state + ’ : chaotic, quasi-periodic, monoperiodic, quasi-periodic 
and finally chaotic. In  contrast with the regimes described above, the range of 
stability of the complete locking state is very narrow : it extends from I, to typically 
1 .OM,. Phase measurements and visual observation indicate that the spatial 
structure of this mode is in the form of a travelling wave. The transition from this 
state to the quasi-periodic regime is continuous. Above a well-defined value Id of the 
control parameter, which we call the ‘desynchronization threshold ’, a new sharp 
peak appears in the spectrum, close to the main one; its amplitude increases with I 
and then saturates a t  a level comparable to that of the first frequency. This 
transition, which is reversible, thus corresponds to the evolution of the system from 
a ‘complete locking state ’ towards an ‘incomplete locking state’, where two distinct 
frequencies are present. Subsequently in the phase diagram, for much larger values 
of the control parameter, the system becomes chaotic. 

We thus observe a t  small values of b, a phenomenon of desynchronization of the 
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chain of oscillators. We do not observe such a phenomenon when the number of 
corotating vortices is smaller than five. One can note that the geometrical non- 
uniformities of the cell are enhanced when both b is decreased and the length of the 
system is increased. Since the frequency of the oscillators is very sensitive to the 
value of b, geometrical non-uniformities can have a significant effect on the 
dynamical behaviour of the system ; in particular they can favour desynchronization. 
However, this does not explain why the system first locks in a monoperiodic state, 
and further, under the increase of the control parameter, undergoes a second-order 
transition towards quasi-periodicity. Such an evolution may suggest that the linear 
chain of oscillators is structurally unstable in this region of the phase diagram. 

The two regions of the phase diagram are separated by a ‘channel’ where no 
‘complete’ lock-in state is observed: the system evolves from chaos to quasi- 
periodicity and from there to chaos without encountering monoperiodic regimes. 

5. Discussion and conclusions 
The results of this study indicate that, dynamically, the system behaves like a 

linear chain of oscillators. As the number of vortices increases, the system shows a 
more complex behaviour which may correspond to the fact that it evolves in a phase 
space of increasing dimension. Complexity has already appeared for eight corotating 
vortices and preliminary results obtained on larger arrays indicate that it increases 
further with the size of the system. 

There are not many theoretical studies of this type of system. In the work of 
Fujisaka & Yamada (1982, 1985), the coupling between the oscillators extends 
throughout the lattice, and its strength is characterized by a parameter D. For large 
D, they observed a homogeneous synchronized state, where all the oscillators are in 
phase. This state becomes unstable as D is decreased, leading to quasi-periodic or 
chaotic behaviour. An equivalent of D in our experiment may be the control 
parameter, since the coupling of the oscillators presumably increases with the 
Reynolds number. We thus observe something analogous to what they find in the 
lower range of the values of the control parameter, although in our experiment the 
synchronized state has not the same spatial structure. It would indeed be interesting 
to proceed to a more detailed comparison with such models. 

Another interesting comparison can be done with the theoretical results of She 
(1987). He determined numerically the transition regimes towards turbulence in the 
Kolmogorov system. He found several features that we observe, i.e. quasi-periodic 
states preceding the onset of chaos and intermittent behaviour. It is interesting to 
note that in spite of the fact that the viscous dissipation in his model is very different 
from that in the experiment, similarities exist in the dynamical behaviour for both 
systems. 

From the experimental point of view, it is interesting to compare our results to 
those obtained by Sommeria (1986) concerning two-dimensional arrays of counter- 
rotating vortices. In this system, two possibilities can arise depending on the spatial 
symmetries of the lattice and the boundary conditions: for square systems, or 
hexagonal systems in a circular container, the first instability is the pairing mode, 
which turns out to be a precursor for the inverse energy cascade. In contrast, for 
hexagonal lattices with hexagonal walls, the pairing mode is inhibited. In this case, 
the system sustains propagating waves, with wavelengths related to the lattice 
period. Chaos may arise from the interaction of several waves in the system ; this 
behaviour has some similarities with the one observed in our experiment, since in 
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both cases, the lattice sustains oscillations, the major difference lying in the way that 
such oscillations become unstable. In our system, the dynamics is dominated by 
competition between various modes of oscillations - leading to intermittency ; in the 
two-dimensional lattice, one may ask if different modes can coexist, and if their 
mutual interaction can drive the system to chaos. It would be interesting to pursue 
such comparisons and analyse the behaviour of the two systems in more general 
terms. 

It is interesting to point out that a particular type of convective linear system 
(Ciliberto & Bigazzi 1988; Dubois et al. 1989) shows similarities with our experiment, 
in the sense that in both cases intermittency is observed when the number of basic 
cells becomes reasonably large. Indeed in our experiment, we have focused on the 
problem of the identification of the basic oscillation, its coupling with its neighbours, 
and the main features of the collective modes ; it would be interesting now to perform 
quantitative measurements on the intermittent regimes and compare with theoretical 
models for spatio-temporal intermittency. 
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